Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater.

نویسندگان

  • Joshua Chia-Hsi Chang
  • Su-Mei Wu
  • Yung-Che Tseng
  • Yi-Chun Lee
  • Otto Baba
  • Pung-Pung Hwang
چکیده

Glucose, which plays a central role in providing energy for metabolism, is primarily stored as glycogen. The synthesis and degradation of glycogen are mainly initialized by glycogen synthase (GS) and glycogen phosphorylase (GP), respectively. The present study aimed to examine the glycogen metabolism in fish liver and gills during acute exposure to seawater. In tilapia (Oreochromis mossambicus) gill, GP, GS and glycogen were immunocytochemically colocalized in a specific group of glycogen-rich (GR) cells, which are adjacent to the gill's main ionocytes, mitochondrion-rich (MR) cells. Na+/K+-ATPase activity in the gills, protein expression and/or activity of GP and GS and the glycogen content of the gills and liver were examined in tilapia after their acute transfer from freshwater (FW) to 25 per thousand seawater (SW). Gill Na+/K+-ATPase activity rapidly increased immediately after SW transfer. Glycogen content in both the gills and liver were significantly depleted after SW transfer, but the depletion occurred earlier in gills than in the liver. Gill GP activity and protein expression were upregulated 1-3 h post-transfer and eventually recovered to the normal level as determined in the control group. At the same time, GS protein expression was downregulated. Similar changes in liver GP and GS protein expression were also observed but they occurred later at 6-12 h post-transfer. In conclusion, GR cells are initially stimulated to provide prompt energy for neighboring MR cells that trigger ion-secretion mechanisms. Several hours later, the liver begins to degrade its glycogen stores for the subsequent energy supply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Articles in Press Glycogen Phosphorylase in Glycogen-Rich Cells Is Involved in the Energy Supply for Ion Regulation in Fish Gill Epithelia

The molecular and cellular mechanisms behind glycogen metabolism and the energy metabolite translocation between mammal neurons and astrocytes have been well studied. A mechanism is proposed for rapid mobilization of local energy stores to support energydependent transepithelial ion transport in gills of the Mozambique tilapia (Oreochromis mossambicus). A novel gill glycogen phosphorylase isofo...

متن کامل

Cellular distributions of creatine kinase in branchia of euryhaline tilapia (Oreochromis mossambicus).

Although euryhaline teleosts can adapt to environmental fluctuation of salinity, their energy source for responding to changes in salinity and osmolarity remains unclear. This study examines the cellular localization of creatine kinase (CK) expression in branchia of tilapia (Oreochromis mossambicus). Western blot analysis of muscle-type CK (MM form) revealed a high association with salinity cha...

متن کامل

Differential responses in gills of euryhaline tilapia, Oreochromis mossambicus, to various hyperosmotic shocks.

Euryhaline tilapia (Oreochromis mossambicus) survived in brackish water (BW; 20 per thousand) but died in seawater (SW; 35 per thousand) within 6 h when transferred directly from fresh water (FW). The purpose of this study was to clarify responses in gills of FW tilapia to various hyperosmotic shocks induced by BW or SW. In FW-acclimated tilapia, scanning electron micrographs of gills revealed ...

متن کامل

Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells.

Gills of euryhaline teleosts are excellent models for studying osmotic-stress adaptation because they directly contact the aquatic environment and are an important effector tissue during osmotic stress. We acclimated tilapia (Oreochromis mossambicus) from fresh water (FW) to seawater (SW); performed suppression subtractive hybridization of gill mRNAs; and identified two transcription factors, o...

متن کامل

Glycogen phosphorylase in glycogen-rich cells is involved in the energy supply for ion regulation in fish gill epithelia.

The molecular and cellular mechanisms behind glycogen metabolism and the energy metabolite translocation between mammal neurons and astrocytes have been well studied. A similar mechanism is proposed for rapid mobilization of local energy stores to support energy-dependent transepithelial ion transport in gills of the Mozambique tilapia (Oreochromis mossambicus). A novel gill glycogen phosphoryl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 19  شماره 

صفحات  -

تاریخ انتشار 2007